skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nelson, Rebecca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2026
  2. Abstract Understanding the assembly of plant-pollinator communities has become critical to their conservation given the rise of species invasions, extirpations, and species’ range shifts. Over the course of assembly, colonizer establishment produces core interaction patterns, called motifs, which shape the trajectory of assembling network structure. Dynamic assembly models can advance our understanding of this process by linking the transient dynamics of colonizer establishment to long-term network development. In this study, we investigate the role of intra-guild indirect interactions and adaptive foraging in shaping the structure of assembling plant-pollinator networks by developing: 1) an assembly model that includes population dynamics and adaptive foraging, and 2) a motif analysis tracking the intra-guild indirect interactions of colonizing species throughout their establishment. We find that while colonizers leverage indirect competition for shared mutualistic resources to establish, adaptive foraging maintains the persistence of inferior competitors. This produces core motifs in which specialist and generalist species coexist on shared mutualistic resources which leads to the emergence of nested networks. Further, the persistence of specialists develops richer and less connected networks which is consistent with empirical data. Our work contributes new understanding and methods to study the effects of species’ intra-guild indirect interactions on community assembly. 
    more » « less
  3. Research Highlights: To better understand within-community variation in wood density, our study demonstrated that a more nuanced approach is required beyond the climate–wood density correlations used in global analyses. Background and Objectives: Global meta-analyses have shown higher wood density is associated with higher temperatures and lower rainfall, while site-specific studies have explained variation in wood density with structural constraints and allometry. On a regional scale, uncertainty exists as to what extent climate and structural demands explain patterns in wood density. We explored the role of species climate niche, geofloristic history, habitat specialization, and allometry on wood density variation within a California forest/chaparral community. Materials and Methods: We collected data on species wood density, climate niche, geofloristic history, and riparian habitat specialization for 20 species of trees and shrubs in a California forest. Results: We found a negative relationship between wood density and basal diameter to height ratio for riparian species and no relationship for non-riparian species. In contrast to previous studies, we found that climate signals had weak relationships with wood density, except for a positive relationship between wood density and the dryness of a species’ wet range edge (species with drier wet range margins have higher wood density). Wood density, however, did not correlate with the aridity of species’ dry range margins. Geofloristic history had no direct effect on wood density or climate niche for modern California plant communities. Conclusions: Within a California plant community, allometry influences wood density for riparian specialists, but non-riparian plants are ‘overbuilt’ such that wood density is not related to canopy structure. Meanwhile, the relationship of wood density to species’ aridity niches challenges our classic assumptions about the adaptive significance of high wood density as a drought tolerance trait. 
    more » « less
  4. Michelmore, R.W., Coaker, G. et 38 al. (2017). Foundational and translational research opportunities to improve plant health. Molec. Plant-Microbe Interact. 30:515-516. Full article on line: https://doi.org/10.1094/MPMI-01-17-0010-CR. 
    more » « less